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The Mohr diagram for three-dimensional reciprocal stretch vs rotation 
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AlmraetmMohr diagrams for stretch provide a useful alternative to the more familiar 2',y' Mohr diagrams, for 
solving two- and three-dimensional strain problems. Examples show how the polar graphs of stretch or reciprocal 
stretch vs rotation can be used to deform or undeform planes in three-dimensional strain. The strain ellipsoid can 
be represented by a three-circle reciprocal stretch diagram which represents the symmetric three-dimensional 
reciprocal stretch tensor. The diagram can also be applied to the representation of asymmetric three-dimensional 
deformation tensors. An example is given for a simple-shear deformation, which is represented by a distinctive 
'off-axis' type of three-dimensional reciprocal stretch diagram. 

INTRODUCTION 

THE Mohr diagram for strain most widely used in struc- 
tural geology is the Mohr circle for reciprocal quadratic 
elongation (2') and unit shear (y') (sensu Nadai 1950). 
Such Mohr circles appear in most text-books, as a 
graphical illustration of strain ellipse equations and as a 
method of determining a strain ellipse from a particular 
set of strain data. The popularity of the it',7/' Mohr circle 
lies in its simplicity and its practical uses, as exemplified 
recently by Lisle & Ragan (1988). 

An alternative Mohr circle for finite strain is the Mohr 
circle for the stretch tensor (Choi & Hs0 1971, De Paor 
1981, 1983, Means 1982, 1983, De Paor & Means 1984). 
All Mohr circles are representations of rank-2 tensors 
(see De Paor & Means 1984); the stretch tensor (like the 
stress tensor represented by a Mohr stress circle in a,r  
space), is a physically more meaningful tensor than the 
reciprocal quadratic elongation (quadratic stretch) ten- 
sor. Moreover, the Mohr circle for stretch provides a 
method not only to represent the symmetric stretch 
tensor, S, but also the asymmetric deformation tensor, D 
(i.e. position gradients tensor). De Paor (1983), Means 
(1983) and De Paor & Means (1984) have shown that the 
Mohr representation of D can be an off-axis Mohr circle; 
an on-axis stretch circle is moved 'off' the graph axis 
(abscissa) by the rigid rotation component, the rotation 
tensor, R (Means 1983, fig. 3b) (see, also, Lister & 
Williams 1983, Bobyarchick 1986, Passchier 1988a,b). 
These authors demonstrate how such Mohr circles can 
be used to illustrate tensor operations, and how 
stretches, strains and rotations interact to produce de- 
formation, in two dimensions. 

The Mohr stretch circle is relatively new to structural 
geology, and has not had time to achieve the text-book 
coverage given to the it',7/' circle. Its use to illustrate 
tensor operations may have disguised its simplicity as a 
graph for illustrating two-dimensional strain. Personal 
communications with D. G. De Paor and W. D. Means 
(1987-1988) have demonstrated to me the advantages of 
using the stretch circle rather than the 'familiar' it' ,7/' 

Mohr circle for solving some two-dimensional problems, 
for illustrating forward and backward deformation, and 
for comparing pure and simple shear deformation. Re- 
cently, Passchier (1988a) and Passchier & Urai (1988) 
have illustrated how such Mohr circles might be applied 
to certain natural deformation structures. 

One problem remains with the Mohr circle: it only 
represents two-dimensional stretch or deformation. 
(This is true for all Mohr circles; for example the 
comparable velocity gradients Mohr circle, ~,¢b---Means 
1983, Lister & Williams 1983, Bobyarchick 1986, Pass- 
chier 1988a---is also only two-dimensional). Yet geologi- 
cal deformations cannot be considered as entirely two- 
dimensional, even plane strains. The rank-2 defor- 
mation tensors represented on Mohr circles by De Paor 
and Means are simply one principal plane of defor- 
mation, the maximum-minimum plane. Their dis- 
cussions of deformation and illustrations of how the 
component tensors are multiplied (De Paor & Means 
1984) are, by definition, restricted to this one plane of 
consideration. However, all planes in a three- 
dimensional deformation can be represented by a Mohr 
stretch circle, just as a 2',?' circle can be derived for any 
strain ellipse (not usually a principal section). Whether 
such general Mohr stretch circles are on or off axis (i.e. 
fixed or rotated principal axes) will depend on what is 
taken as the 'fixed' frame from which to measure ro- 
tation. 

The topic of this paper is to investigate some appli- 
cations of the stretch diagram for three-dimensional 
strain. This will be called the Mohr stretch diagram, 
because it consists of more than one circle. It is anal- 
ogous to the it',y' three-circle Mohr diagram for three- 
dimensional strain introduced by Nadai (1950, p. 129), 
applied to geological strain problems by Brace (1961) 
and Ramsay (1967, p. 170), and reviewed by Treagus 
(1986). Treagus presented a method of representing 
sectional strain ellipses on the 2',?' Mohr diagram. The 
present account brings these same principles to the 
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three-circle Mohr diagram for stretches and rotations in 
three dimensions, in order to investigate its potential use 
for solving three-dimensional strain problems. 

MOHR CIRCLES FOR STRETCH 
IN TWO DIMENSIONS 

1), the two circles are different so it is prudent to 
concentrate on one or the other. The present paper will 
concentrate on the reciprocal stretch diagram, S', where 
angles are measured in the final state, as seen in de- 
formed rocks. However, the principles are equally appli- 
cable to the stretch diagram, S. 

Stretch can be represented on Mohr circles of two 
types (De Paor 1981, Means 1982). One is for the stretch 
tensor, S, with angles measured in the undeformed state, 
and the other for the reciprocal stretch tensor, S', with 
angles measured in the deformed state (Fig. 1). These 
two circles are equivalent to the two quadratic stretch 
ellipses/circles 0.,Y and 2 ' ,y ' )  (Nadai 1950, Brace 1961). 
The difference between the stretch and quadratic stretch 
circles lies in the graph co-ordinates. The familiar 2',7/ 
circle is a Cartesian graph with abscissa, 2',  and ordi- 
nate, y'.  The Means and De Paor stretch circles arepolar 
graphs, with all values of S or S' in the strain ellipse 
measured radially from the graph origin, and all ro- 
tations of lines in the ellipse (to) given by the ray 
inclination. 

Figure 1 shows the two types of stretch circle (after 
Means 1982, figs. 1 and 4) for a known strain ellipse 
(principal axes Sl, $2), and arbitrary line L. For both 
circles, the rotations of particular lines (e.g. L-L') are 
the same. Only in the special case of unit-area plane 
strain have the two circles the same diameter and pos- 
ition, which can allow S and S' to be plotted together on 
the one figure (e.g. De Paor 1983, fig. 21b) (with care not 
to confuse sign conventions). In all other cases (e.g. Fig. 

THE PRINCIPAL MOHR CIRCLES FOR STRETCH 

A strain ellipsoid contains three principal strain 
ellipses, each of which may be represented by a Mohr 
stretch circle (Fig. 2); these may be called the principal 
Mohr circles. Together, these three circles define a Mohr 
stretch diagram, where all stretches and rotations for the 
strain ellipsoid fall in the shaded field bounded by the 
three circles (Fig, 2). A distinction must now be made 
between rotation angles, co. measured in two dimensions 
on a single Mohr circle, and angular rotations in three 
dimensions, here termed p, measured on a full three- 
circle Mohr stretch diagram. For two-dimensional ro- 
tations, to = 0 will denote the strain ellipse axes (regard- 
less of whether these have themselves rotated in three 
dimensions), and for three-dimensional rotations, p = 0 
will denote the ellipsoid axes. The distinction between 
two- and three-dimensional rotations are analogous to 
the two- and three-dimensional shear strain com- 
ponents, Yll and Y:r on the 2' ,y '  diagram of Treagus 
(1986). 

The three principal Mohr circles can provide a simple 
method of determining rotations of oblique planes in a 
strain ellipsoid, by making use of their principal-plane 
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Fig. 1. The two types of Mohr stretch circle, after Means (1982). (a) Initial undeformed state (circle) with initial principal 
stretch axes, St. S,_. and arbitrary line (0 = 30*). (b) Strain ellipse; St = 2. S: = 0.8. (c) Mohr stretch circle, (S, co) for the 
undeformed state. (d) Mohr reciprocal stretch circle, (S', to) for the deformed state. SI = 0.5, ~ = 1.25, 0' = 13 °. co for L 
and L' is 17 °. Both Mohr circles represent angles (0. 0') in their true sense, so are of the ,'first kind" (De Paor & Means 

1984). 
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Fig. 2. The three principal reciprocal Mohr stretch circles. The three circles bound the region (shaded) of reciprocal 
stretches and angular rotations in three dimensions, for the whole strain ellipsoid. 

intersections. Figure 3(a) shows a general section plane 
of a strain ellipsoid which is not parallel to any principal 
axes, but crosses the principal planes on lines A', B', C'. 
Points A',  B', C' can be plotted on the three principal 
Mohr stretch circles (Fig. 3b) in the same manner as any 
line of known orientation such as L' in Fig. l(d). It is 
convenient, here, to use half-circle diagrams, as in 
Treagus (1986), because the diagram is mirrored across 
the abscissa. (The question of a sign convention for 
rotations in three dimensions will be addressed in a later 
section, where the non-mirrored off-axis diagram is 
introduced.) Note that the Mohr diagram in Fig. 3(b) 
only represents the three principal-plane intersections in 
the oblique plane, and does not illustrate stretches and 
rotations for other lines in the plane. How these points 
link up to illustrate the whole plane will be discussed in 
the next section. 

The reciprocal stretches and angular rotations for 
lines A', B', C' can be read off from the three Mohr 
semi-circles in Fig. 3(b). Each line has its full rotation in 
the strain ellipsoid (p) defined by its position on the 
principal Mohr circle it lies on (since the principal planes 
have zero rotation). Therefore, the section plane can be 
restored to its original orientation (A, B, C) in the strain 
ellipsoid (Fig. 3c). (The same simple procedure can be 
applied to find the distorted position of a plane of known 
original orientation, using the S Mohr diagram.) 

Now, it should be possible from the information in 
Figs. 3(a) & (b) (i.e. three stretches and their orien- 
tations) to determine the strain ellipse for this section 
plane, and represent it with a Mohr circle. The Mohr 
stretch circle will have the same S' ray values for A',  B', 
C' as in Fig. 3(b), but now measures the rotations of A', 
B', C' within the plane (i.e. co). The presently unknown 
strain ellipse axes will be points of zero co. 

A method of constructing the A', B', C' sectional 
ellipse Mohr circle (for reciprocal stretch) for the 
example in Fig. 3 is presented in Fig. 4. First, measure 
ZAB,  ZBC and /'CA in the plane, before and after 

deformation (angles shown in Figs. 3a & c). and sketch 
the original and deformed triangles (Figs. 4a & b). 
Choosing two lines (e.g. A, B), measure the difference 
in ZAB in the plane, before and after deformation, 
which is their differential rotation, A (66 ° - 55 ° = 11°). 
Then trace the three reciprocal stretch arcs for A', B', C' 
from the principal Mohr circles in Fig. 3(b) (Fig. 4c). 
Define an arbitrary point for A' on the A' arc. and draw 
its ray from the origin. Then draw the B' rav inclined at A 
to it. (There are two senses possible for A, but only one 
will allow a circle to be constructed.) Where the B' ray 
crosses the B' arc is point B'. Join A' and B' (Fig. 4c). 
The A'B'C' triangle (similar to Fig. 4a) can now be 
drawn (Fig. 4d) and the Mohr circle constructed to fit 
this triangle. It may be noted that this construction has 
some similarities to Ramsay's (1967, pp. 130-134) tri- 
angular constructions to determine angular shear, but in 
the present case, the triangle angles are measured from 
Fig. 3(a), not constructed. Lisle & Ragan (1988) present 
a simpler method for constructing a 2',y' Mohr circle to 
solve the 'three-stretch problem" graphically, but this 
does not work analogously on the polar stretch diagram. 

An alternative method of determining a sectional 
Mohr stretch circle from a Mohr diagram for a strain 
ellipsoid would be to use the concept of a Mohr locus for 
stretch, analogous to that described by Treagus (1986) 
for 3.',y'. This is described below. 

MOHR DIAGRAMS FOR STRETCH ELLIPSOIDS 

The Mohr diagram for reciprocal stretch vs rotation in 
three dimensions is a three-circle Mohr diagram (Fig. 2) 
with identical geometry to that for three-dimensional 
stress (Mohr 1882) and reciprocal quadratic elongation 
(Nadai 1950, p. 129). The reciprocal stretch and rotation 
of any direction in a strain ellipsoid can be determined 
by construction, using its angles ~ ,  ~ ,  ~ to principal 
stretch axes (Fig. 5), as already described for other Mohr 
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Fig. 3. Example of the construction of the rotation of an oblique plane in a known strain ellipsoid. (a) An oblique plane. 
045"/45"SE. A ' ,  B'  and C' are the principal-plane intersections, and 0~ = 45 °. ob = 55 °, ok- = 5 5  °. (b) Construct A', B' and 
C' on the three principal half Mohr circles, using the three 0 '  angles. Measure the rotation angles (e.g. Ps ) for A ' .  B' .  C'.  
(Oa = 19°,/)8 = 16% Pc = 250.) (c) Restore A ' .  B ' ,  C' to their original positions, A, B, C, on the principal planes, using these 
pvalues  (e.g. 0A = (9~4 + PA)- This determines the initial position of the section plane: 0a = 54", 0s = 71 °. Oc = 80*. Angles 
AB, BC and AC are measured and labelled, for use in Fig. 4(b). (a) and (c) are lower-hemisphere, equal-area projections. 

diagrams (e.g. Ramsay 1967, pp. 147-t53. Treagus 
1986, figs. 1 and 3). However, recall that unlike the or, r 
or 2',~,' Cartesian graphs, the Mohr stretch diagrams use 
polar co-ordinates. In Fig, 5(b), the reciprocal stretch of 
L' (S~.) is its radial distance from the origin, and its total 
rotation in three-dimensional strain (with respect to fixed 
ellipsoid axes) is angle PL- Recall that the line L' in Fig. 5 
may be contained on any number of sectional ellipses, 
whose particular Mohr circles only record the pro- 
portion of p in the plane of section (denoted to). An 

understanding of the difference between two- 
dimensional (to) and three-dimensional rotations (p), 
like the difference between two- and three-dimensional 
shear strain discussed in Treagus (1986), is fundamental 
to the jump from two- to three-dimensional strain analy- 
sis. 

A Mohr diagram does not provide the direction of 
shear stress or strain, nor in the present case, directions 
of three-dimensional rotation (PL); a secondary con- 
struction is required, following the Zizicas (1955) con- 
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Fig. 4. Determination of the strain ellipse for the section plane in Fig. 
3. (a) and (b) show the on-plane positions of A, B, and C. after and 
before straining, respectively. The relative rotation of B to A (A) is 11". 
(c) Draw the reciprocal stretch arcs for A' ,  B', B', using ray values in 
Fig. 3(b). Draw an arbitrary ray to locate A'.  Draw another ray at 
angle A to the A'  ray; where it erogses the S~ arc is point B'. Join A'  
and B'. (d) Draw a triangle on A'B'  'similar' to triangle (b), to locate 
C'. Construct a circle to fit this triangle, which is the Mohr circle 
(reciprocal stretch) for the section plane. The line from the origin 
through the circle centre defines the graph abscissa (not horizontal in 
this example). The principal axes lie on the abscissa. Result: reciprocal 

principal stretches 0.86 (P0 and 1.77 (P2); PI at ==3* to B'. 

struction for stress (see, also, Jaeger & Cook 1969, p. 30, 
Johnson & MeUor 1973, p. 52). Since all Mohr diagrams 
are topologically equivalent, the Zizicas construction 
can be applied equally well to the stretch diagram. The 
method depends on the fact that a section which contains 
L' and one principal ellipsoid axis can be constructed as 
a circular arc. This introduces the general concept of 
representing sectional ellipses as Mohr loci on the 
stretch diagram. 

Sectional ellipse loci 

The types and shapes of sectional ellipses on the Mohr 
stretch diagram are identical to those described for the 
2',y' diagram in Treagus (1986). Sectional ellipses can 
be classified into three types, which are illustrated in Fig. 
6. 

(1) Principal sections of ellipsoids are whole circles, or 
semi-circles if rotation direction (sign) is neglected (Fig. 
6a). In this paper, these are called the principal Mohr 
circles. 

(2) Sections containing one principal stretch axis are 
circular arcs passing through the particular principal 
axis, with centres on the graph abscissa (see Treagus 
1986, fig. 6). One example from each of the three sets of 
planes is shown in Fig. 6 (b, i-iii). This type of section is 
used in the Zizicas construction, as described below. 

(3) Generally oblique sectional ellipses are rep- 
resented by loops on the half Mohr diagram (e.g. Fig. 
6c). More examples of locus shapes are shown in Appen- 
d!x Fig. A1 (see also Treagus 1986, fig. 8). These loci will 
be investigated later. 

To determine directions of  three-dimensional rotation 

Consider the general line, L' in Fig. 5, and its three- 
dimensional rotational angle, Or.. Following the Zizicas 
construction (1955), draw a plane through one principal 
axis and L'; the $1 axis is used here (Fig. 7a). Construct 
the Mohr locus of this plane (Fig. 7b); it is a type-2 locus, 
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Fig. 5. The location of an arbitrary line L' on a Mohr diagram, using ~; angles (~i = 400, SJ = 60°, ~J = 66.5°) • (a) A 
quadrant lower-hemisphere, equal-area projection defining the ~ small circles to Si. (b) The ~; small circles are circular arcs 
on the Mohr diagram; ~] is concentric with the S~S~ circle, centre Ci, and so on. The S[. PL values are easily read off ( 1.02. 

32°). 
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(a) Type 1 

(b) Type 2 

Circular . s e c t ~  

( i i)  

S'  

a circular arc centred on the abscissa (see Fig. 6b). Label 
point T' its intersection with the S~S'3 circle. The rotation 
of point T is PT. The principal ellipse axes for the 
St-L'-T '  plane are the minimum and maximum S' 
values, which are S; and T'. A Mohr circle is drawn with 
these values (Fig. 7c). Now draw an arc from the graph 
origin through L' which 'swings' L' from the three- 
dimensional Mohr diagram (Fig. 7b) to the two- 
dimensional Mohr circle (L',  Fig. 7c). The angle ~[ of L' 
to S~ is now measured on the circle, and can be checked 
with Fig. 7(a). Measure the rotation of L' on the Mohr 
circle (wt, Fig. 7c); this is (~l - ~ ) .  

The relationship between the three angles, PL, wL and 
PT are shown in Fig. 7(d). The direction of rotation of 
line L with respect to the principal stretch axes is shown 
by the solid arrow. The same result would be obtained 
by using planes through $2 or $3, but these are slightly 
less convenient than the straight-line plane on the ster- 
eographic orientation used here. This Zizicas construc- 
tion is one of many possible constructions for determin- 
ing rotation sense by splitting the three-dimensional 
rotation into two-dimensional components (compare 
with the y' method in Treagus 1986). 

Figure 7 serves to illustrate the relationship between 
rotations in three dimensions (in the ellipsoid) and in 
two dimensions (within the section plane) for a type-2 
Mohr locus. The next section will examine this relation- 
ship for more general type-3 Mohr loci. 

MOHR LOCI FOR OBLIQUE SECTIONAL 
STRETCH ELLIPSES (TYPE-3) 

(c) Type 3 

Fig. 6. Classification of sectional ellipse Mohr loci. (a) Typed  are the 
principal planes, which are full circles. (b) Type-2 are planes contain- 
ing one principal axis, which are partial circles centred on the abscissa. 
Four planes are shown. Solid curve: circular section (S' = S,'). Short,  
dash curve (i): plane parallel to S I and 45* to S~, and S~. Long-dash 
curve (ii): plane parallel to S" and 45 ° to S~ and S.L Dot-dash curve 
(iii): plane parallel to S.~ and 45 ° to S~ and S~. For each. the arc centre is 
given by the intersection of the perpendicular bisector of the line 
joining the particular principal axis (e.g.S.~) to the 45 ° point on the 
principal circle (S]. S~). (See also Fig. 7b.) (c) Type-3 loci are planes 
oblique to all three principal axes. The example is plane 045°/45 ° from 
Fig. AI (also Fig, 3). It is a loop which is tangential to the principal 

circles at A ' .  B' .  C' .  its principal-plane intersections. 

General sections of strain ellipsoids which are oblique 
to all three axes are represented on Mohr diagrams by 
variably shaped arcuate loops (Figs. 6c and A1). These 
type-3 Mohr loci cannot be easily predicted, nor con- 
structed exactly, from just two or three points (see 
Treagus 1986). For example, the points A',  B', C' on 
Fig. 3(b) could be fitted to a circle, triangle, ellipse, etc. 
The graphical method used in Treagus (1986, fig. 6) 
relied on beginning by plotting the principal-plane inter- 
sections (A', B', C'), adding the circular-plane intersec- 
tions, and then choosing a few more points on the 
section plane which required plotting according to their 
~p[, ~ ,  ~ angles (defined in Fig. 5). This is somewhat 
tedious and inexact. In the Appendix, an algorithm is 
presented which can be used in a simple computer 
program to plot Mohr loci for planes (represented by an 
array of lines) in terms of their 'strike' and "dip" to the 
principal stretch axes (S1 vertical, $2 N-S and $3 E-W). 
The examples (Fig. A1) show that the shapes are varia- 
bly arcuate, but not circular arcs. 

For the ~.',)/loci for sectional ellipses shown in Trea- 
gus (1986), the principal ellipse axes (Pl. P2) are the 
most extreme left and extreme right values of 3/(Fig. 
8a). Exactly the same locus represents a sectional ellipse 
on the stretch diagram (Fig. 8b), but for a different 
ellipsoid, because the abscissa scale (for measuring prin- 
cipal axial values) is now reciprocal stretch rather than 
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S~ 

Fig. 7. Determination of the direction of rotation of an arbitrary line (L') in the strain ellipsoid, using a modified 
construction of Zizicas (1955). (a) Quarter stereographic representation locating L' (same L' as in Fig. 5a; ~ = 40*). Draw 
a plane through S t and L' and label T' as shown. (b) Draw the half Mohr diagram and plot L', as in Fig. 5(b). (PL = 32*.) 
Construct the circular type-2 Mohr locus (see Fig. 6b) for the S'nL' plane by drawing a circular arc through S[, L', centred on 
the abscissa (C). Its intersection with the S~S~ circle locates T'. Measure 0T (19"). (C) Construct the Mohr circle for the 
S'iL'T' plane, on axes Si and S~-. Positions of L' and T' swung onto the Mohr circle are shown by Underbars. Measure to L 
(28*), the component of rotation for L' in the plane of the Molar circle. (d) The original position of L can be constructed. 
using three rotation angles: PL is its total rotation; PT is the total rotation of T', and thus the rotation of the St L' plane; to L is 

the component in the S'IL' plane. The large arrow is the direction of rotation. 

reciprocal quadratic stretch. For  the reciprocal stretch 
locus (Fig. 8b), the principal ellipse stretch axes are 
given by the minimum and maximum rays. Thus, the 
Mohr circles in (a) and (b) are different, the former 
measuring 2 ' ,y ' ,  and the latter S' ,p.  

The above examples of stretches and rotations in 
three dimensions demonstrate three points about Mohr 
stretch diagrams and their sectional ellipse loci. 

(1) On three-circle Mohr stretch diagrams, the total 
angular rotations (p) are recorded,  relative to fixed 
ellipsoid axes. For  type-3 loci, all lines of the section 
plane have rotated in the ellipsoid; there is no point of 
zero rotation. 

(2) Any ellipsoid section plane can be represented by 
a Mohr stretch circle which only represents in-plane 
rotations (to) relative to 'fixed' ellipse axes. However ,  
for all general (type-3) sections, these ellipse axes have 
rotated in the ellipsoid. 

(3) Neither the three-dimensional stretch diagram nor 
two-dimensional stretch circles record the three- 
dimensional deformation. The 'stretch + rotation'  of 
general ellipse sections must therefore not be confused 
SG 12:3-G 

with the De Paor-Means  off-axis Mohr circle for the 
two-dimensional deformation tensor, composed of a 
symmetric stretch tensor and a rigid rotation tensor 
within the same plane. 

The last point introduces the idea of representing 
three-dimensional stretches and rotations for known 
deformations, which would be a three-dimensional ver- 
sion of the De Paor-Means  representation of off-axis 
Mohr circles for rank-2 asymmetric deformation ten- 
sors. 

OFF-AXIS MOHR DIAGRAMS FOR STRETCH 
AND ROTATION: THE THREE-DIMENSIONAL 

DEFORMATION TENSOR 

All Mohr circles which represent two-dimensional 
stretch tensors will be, by definition, on-axis (Fig. 1), 
because stretch tensors are symmetric. In terms of the 
Mohr circle, this means that only rotations arising from 
two-dimensional strain are represented,  and these are 
symmetrical about the strain ellipse axes. However ,  a 
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Fig. 8. The relationship between two identical type-3 Mohr loci (Fig. 
6(:) and their sectional ellipse Mohr circles, for two types of Mohr 
diagram. (a) the 2',y' Mohr diagram, after Treagus (1986). Principal 
axes (Pt, P2; starred) are the leftward and rightward points on the 
locus, which define the Mohr circle (0.81, 1.69). (b) The S',p diagram 
of this paper. Pt and P2 (starred) are defined on the locus by the 
minimum and maximum graph radii, which determine the diameter of 

the S' ,  to Mohr circle (0.86, 1.77) (as also derived in Fig. 4). 

Fig. 9. "On-axis' and "off-axis' Mohr circles (S' ,to) for two-dimensional 
deformation, after De Paor (1983) and Means (1983). (a)Pure shear 
(symmetric deformation tensor). Zero rotation of strain ellipse axes. 
(b) Simple shear (asymmetric) with shear strain y (dextral)~ Rotation 
of ellipse axes by 3 (=tan -I (y12)). Both diagrams have the same strain 
ellipse. Squares show the lines of no finite longitudinal strain, at O' to 

S; in each. 

two-dimensional deformation involving strain and ro- 
tation of the strain axes has an asymmetric deformation 
tensor. This may be  represented in Mohr-circle space by 
an off-axis Mohr circle, as introduced by De Paor (1981, 
1983) and Means (1983). Figure 9 illustrates on- and off- 
axis Mohr circles (the "first kind" of De Paor & Means 
1984) for two simple (two-dimensional) deformations: 
(a) pure shear and (b) simple shear. They have the same 
stretch tensor, S, shown by identical circles, but differ- 
ent deformation tensors, D, indicated by circle position, 
because of the different rigid rotation tensors, R. Pure- 
shear deformation is represented in two dimensions by a 
stretch circle centred on the abscissa (Fig. 9a) and 
simple.shear by a circle tangential to the abscissa (Fig. 
9b), lying above for sinistral and below for dextral 
simple shear. The tangent point is the simple-shear 
direction, the only direction with zero rotation (the 
eigenvector). 

Now consider Mohr diagrams for three-dimensional 
stretch and rotation, for pure-shear and simple-shear 
deformation. Clearly, the pure-shear diagram is the on- 
axis three-circle Mohr diagram already illustrated (Fig. 
2), because the deformation tensor is the same as the 

stretch tensor (i.e. unit rotation tensor) (Fig. 10). It is 
appropriate, now, to use the full Mohr diagram rather 
than the half diagram, and devise a sign convention for 
three-dimensional rotations. The same convention can 
then be applied to Mohr diagrams which are not sym- 
metric (i.e. off-axis). The signs chosen for rotations are 
defined in Fig. 10(b); the stereonet is divided into + (W) 
and - (E) 'sides', relative to viewing from the south. 
Use of the full Mohr diagram now changes the form of 
Mohr loci for sectional ellipses. The same looped locus 
shown earlier on the half diagram (Figs. 6c and 8b) is 
now split, and traverses the upper and lower Mohr 
vacancy field (Fig. 10c). Two sign changes occur at A' 
and B' as the plane crosses these principal planes, and 
'jumps' across the appropriate Mohr circles. 

The section plane shown in Fig. 10(d) (i.e. 
045°/450NW) is one of four geometrically equivalent 
planes in the ellipsoid. The plane mirrored on E-W 
(135°/450SW) is also represented by the locus shown. 
The two planes mirrored on N-S (045°/45"SE and 
135"/450NE) have the reverse sign, and are thus rep- 
resented by an upside-down form of Fig. 10(c). 

Figure 11 is the equivalent Mohr stretch diagram to 
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Fig. 10. The full three-dimensional Mohr diagram (S',#) for pure-shear deformation. (a) The three-circle diagram, showing 
the sign convention used. (b) Stereographic representation of the strain ellipsoid, showing the fields of + and - rotations 
and zero rotation (circles). (c) The Mohr locus for the oblique sectional ellipse example used previously (045*/45°; Figs. 6c. 
8b and AI), represented stereographically in (d). Heavy broken curve is the sectional ellipse, with principal axes starred; 
solid curves are principal planes and fine broken curves circular sections. The pecked line indicates how the locus is split as it 
changes sign at A' and B'. An upside-down version of the locus in (c) represents the equivalent plane of reversed sign (see 

text). 

Fig. 10, but for a simple-shear deformation. Both defor- 
mations have identical strain ellipsoids but different 
rigid rotation components. The Mohr diagram is a three- 
dimensional version of the off-axis Mohr circles of De 
Paor (1983) and Means (1983). The principal SiS~ plane 
is the De Paor-Means off-axis Mohr circle (e.g. Fig. 9b). 
However, the SiS~ and S~S~ principal planes are not full 
Mohr circles on the three-dimensional deformation dia- 
gram. They are represented by circular arcs, centred on 
the abscissa, which link the off-axis S; or S~ points to the 
on-axis S~ point. These principal Mohr arcs are col- 
lapsed versions of the circles in Fig. 10, as they have no 
central vacancy. Similarly, one of the circular sections in 
Fig. 10 (i.e. the shear or flow plane) is collapsed to a 
single point in Fig. l l(a).  

The full Mohr diagram for simple shear deformation is 
off-axis and asymmetric. Instead of lines or loci occupy- 
ing the vacancies between the three principal circles (as 
shaded in Figs. 2 and 10a), here they occupy the whole 

region of the S~S'3 circle• Figure 1 l(b) shows the rotation 
signs for simple shear, and it is clear that all rotations 
would be either positive (defined for sinistrai simple 
shear) or negative (dextral, as here)• The oblique- 
section plane shown in Figs. 11(c) & (d) has the same 
orientation in the ellipsoid as that in Figs. 10(c) & (d). 
Although the two Mohr loci appear very different in 
geometry, this difference is caused entirely by the differ- 
ent rigid rotation components• Equivalent lines on each 
locus have the same stretches. For both loci, the two- 
dimensional stretch is represented by the Mohr circle 
drawn in Fig. 8(b). 

Mohr diagrams could be drawn for other three- 
dimensional deformations which are neither perfectly 
pure shear nor simple shear (three-dimensional equival- 
ents of De Paor 1983, fig. 22; see also Bobyarchick 
1986). The forms of these diagrams will be geometrically 
more complex than either Fig. 10 or Fig. 11, with a 
general trend of increasing asymmetry and complexity 
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Fig. 11. The full three-dimensional Mohr diagram (S', p) for simple-shear deformation. The strain ellipsoid is the same as 
the pure-shear example in Fig. 10. Symbols as for Fig. 10. (a) The 'three-circle' diagram for dextral simple shear. All 
rotations are negative. See text for discussion of the features of this diagram. (b) Stereographic representation of the strain 
ellipsoid and rotations. All rotations are negative, except for the plane of shear (circles) which is zero. (c) Mohr locus for the 
oblique sectional ellipse example (see Fig. 10c). The locus, only constructed approximately here, is a continuous loop, It 
represents all four planes symmetrical in the ellipsoid to the plane shown stereographically in (d), unlike for pure shear. 
Note that the reciprocal stretches for A',  B', C' and the principal ellipse axes, Pi and P2. in (c), are identical to those sho~ n 

in Fig. 10(c). 

with increasing rotational deformation. Lister & Wil- 
liams (1983, fig. 3d) illustrated an analogous general 
three-dimensional flow on the k,tb Mohr diagram, but 
this is an incorrect representation (G. S. Lister personal 
communication 1989). [On a Mohr diagram for three- 
dimensional flow, such a rotational flow should be 
represented by an even more off-axis diagram than the 

simple-shear example in Fig. 11, whereas the two- 
dimensional flow (Mohr circles) for the three non- 
principal planes in their fig. 3(d) would not be the 
tangential circles shown, but should intersect.] 

These off-axis three-dimensional diagrams are not 
easy to understand or use. Even the simple-shear dia- 
gram is geometrically complex. Its only simple geometri- 
cal features are the circular arcs which represent princi- 
pal planes and one circular section, and a single point for 
the shear-plane circular section (Fig. 11). Off-axis three- 

dimensional Mohr diagrams lack the following two fea- 
tures of the symmetric (on-axis) three-circle diagrams. 
which make them practicable. 

(1) Small circles for ¢~, q~ and ¢~ are circular arcs 
which segment the Mohr diagram (see Fig, 5). On the 
off-axis diagram these are no longer circles. Investi- 
gation of their form on the simple-shear diagram (Fig. 
11) has yielded no predictable geometry for ¢~ small 
circles, which would allow points to be plotted easily on 
off-axis Mohr diagrams. 

(2) Planes containing one principal axis are rep- 
resented by circular arcs. centred on the abscissa (type-2 
Mohr loci: Fig. 6b). This is fundamental to various 
constructions (e.g. Zizicas 1955). It is not found to be 
true for the simple-shear diagram (Fig. t 1) and thus will 
not be true for any three-dimensional off-axis diagram. 

As a consequence of the two points above, the off-axis 



Mohr  d iagram for 3-D reciprocal stretch vs ro ta t ion  393 

Mohr  diagram is a difficult graph to use. Its ma in  meri t  

may be to demons t ra te  the complexi t ies  of ro ta t ions  in 
th ree -d imens iona l  de fo rmat ion  involving ro ta t ional  
strains.  

CONCLUSIONS 

The  Mohr  diagram for th ree -d imens iona l  s tretches 
and  ro ta t ions  provides a useful graphical  me thod  for 
restor ing or ien ta t ions  of p lanes  and lines in three-  
d imens iona l  strain.  Examples  here have concen t ra t ed  
on  the reciprocal stretch diagram which can be used to 
de te rmine  u n k n o w n  original  o r ien ta t ions  from know n  
principal  s trains and  final or ien ta t ions .  However ,  the 

same principles can be appl ied to forward s t ra ining,  
using stretch values and  original  angles. Both  the stretch 
and  reciprocal stretch Mohr  d iagrams for three-  
d imens iona l  strain are represen ta t ions  of the symmetr ic  
th ree -d imens iona l  stretch tensor ,  so the d iagrams are,  

by def ini t ion,  mir rored  across the abscissa. It is there-  
fore a conven ien t  simplification to disregard the sign of 
ro ta t ions  in three d imens ions ,  and use a half  Mohr  
diagram for stretch. 

The  Mohr  diagram for stretch and ro ta t ion  can also be 
used to represent  the th ree -d imens iona l  de fo rma t ion  
tensor ,  which is only symmetr ic  in the case of i r rotat io-  
nal  de format ion .  The  full, ra ther  than half,  Mohr  dia- 

gram is now required .  The  diagram for s imple-shear  
de fo rmat ion  in three d imens ions  i l lustrates the complex-  
ities of this simplest  k ind of off-axis Mohr  d iagram,  as a 
represen ta t ion  of th ree -d imens iona l  rota t ions  and  
stretches.  This serves as a r eminde r  that  two- 
d imens iona l  analyses and  Mohr  circle i l lustrat ions do 
not  adequate ly  demons t r a t e  the effects of three-  
d imens iona l  de format ion .  
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APPENDIX 

AN A L G O R I T H M  F O R  P L O T T I N G  M O H R  L O C I  

The section plane is treated as an array of lines lying in the plane, 
which are then plotted as a series of points on a Mohr diagram. The 
algorithm and program (Table AI) were designed for the ~.',y' dia- 
gram, and the Cartesian co-ordinates (2',y') of each of the lines are 
computed and plotted on a three-circle diagram (Fig. A1). L1, L2, L3 
are 2 I, ~.~, ~.j, respectively. However, the Mohr loci plotted in Fig. A1 
are equally applicable to other Mohr diagrams such as the polar stretch 
diagrams. So in the present paper, L1, L2, L3 will be equivalent to S~, 
S~, S~. In the (non-reciprocal) stretch diagram they would be S 3, 52, St, 
respectively. 

The section plane is defined in terms of its strike angle (S) and dip 
angle (D) measured with respect to 2; or Si vertical. )~ or $2_ N-S, and 
A~ or S 3 E-W, which is the orientation convention used throughout this 
paper (e.g. Fig. 3a). The plane can be considered as an array of lines, 
each of which must be perpendicular to P, the pole of the plane. 
Writing l, m, n as the direction cosines of P, and L. M. N for the 
direction cosines of any line lying in the plane, the following ex- 
pressions can be written: 

l = cos D 

m = sin S sin D 

n = (sin 2 D cos 2 S) 'c2 

L = cos ~ 
M = cos ~ 
N 2 = 1 - L 2 - M 2 

and for mutual perpendicularity 

IL + mM + nN = O. 

For each plane, 101 lines have been used, stepping @~ in 50 increments 
each side of the line of dip (¢~min = 90 - D*) to the line of strike ( ~ m a x  
= 90*). For the successive L values, M and N can be derived using the  
above equations (Table A1, lines 200-210, 220-222). The 2',7" co- 
ordinates (LP, GP) are then computed (lines 212-21,1.22-1-226) for 
L1, L2, L3 and L, M, N, using the standard formulae (Nadai 1950, p. 
128). Each A',y' co-ordinate is successively plotted on a 2',y' graph, 
and the principal semi-circles drawn, finally. 

As already stated, these plots can be used for any topologically 
equivalent Mohr diagram (e.g. ~.', S', S, b), and LI. L2. L3 will refer to 
the appropriate principal axial values. The present program (Table 
A1) required L3 >~ L2 ~> L1 because L3 is the chosen dimension of the 
abscissa; it sets L1 = 1/(L2 x 1.3), and so is restricted to isochoric 
deformations. With simple changes, the program could be tailored to 
other more general uses. 
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Table A1. Program listing of a Basic program for plotting Mohr loci, using an IBM-compatible computer and HP-GL 
plotter language. Input is L3, L2. strike and dip. See Appendix text for explanation 

i0 REM mohr loci 
15 OPEN "coml:9600,n,7,1,rs.cs65535,ds,od" AS#I 
20 CLS:PRINT TAB(13),"Mohr loci calculations and plot":PRINT 
40 INPUT "enter value of L3";L3 
50 INPUT "enter value of L2";L2 
60 Llsl/(L2*L3) 
100 INPUT "STRIKE =";STRIKE 
110 INPUT "DIP-";DIP 
115 GOSUB 1000 
120 PI=3.14159 
122 S=STRIKE*PI/180 
124 D-DIP*PI/180 
126 SS~SIN(S) 
128 CS COS(S) 
13o SD-SIN(D) 
132 CD,~CO~(D) 
1so PHMI. 90-DIP 
160 NT,,,DIP/50 
170 FOR PH-PHNIN TO 90 STEP NT 
174 RL~PN*PI/180 
180 L~COS(PJ~) ̂  
190 RT=SQR(SD 2-L^2+.00001) 
200 M=(-L*SS*CD+CS*RT)/SD 
210 N=(-L*CD*CS-SS*RT)/SD 
212 LP=LI*L^2+L2*M^2+L3*N^2 
214 GP~SQR((L1-L2)^2*L^2*M^2+(L2-L3)^2*M^2*N^2+(L3-L1)^2*N^2*L^2) 
216 GOSUB 2000 
220 M-(-L*SS*CD-CS*RT)/SD 
222 N=(-L*CD*CS+SS*RT)/SD 
224 LP=LI*L^2+L2*M^2+L3*N^2 
226 GP-SQR((LI-L2)^2*L^2*M^2+(L2-L3)~2*M^2*N^2+(L3-LI)^2*N^2*L^2) 
230 GOSUB 2000 
240 NEXT 
260 PRINT#1,"sm;" 
280 REM plot arcs 
300 A=L2:B=L1 
310 GOSUB 3000 
320 A=L3:B=L1 
330 GOSUB 3000 
340 A=L3:B=L2 
350 GOSUB 3000 
410 INPUT "another plot ";RESP$ 
420 IF (RESPSs"y" OR RESP$~"Y")THEN PRINT #l,"pg;":GOTO 20 
430 PRINT #1,"nr;spO;" 
490 CLOSE (i) 
500 END 
1000 REM initialise 
1012 TITLEI$~"LI="+STR$(L1)+" L2="+STR$(L2)+" L3="+STR$(L3) 
1014 TITLE2$-"strlke="+STR$(STRIKE)+" dlp~"+STR$(DIP) 
1020 SFACTOR=6000/L3 
1022 XSTART~500 
1024 YSTART=500 
1030 PRINT#1,"in;spl;pa 6500,500;pd 500,500;pa 500,3500;" 
1031 PRINT#1,"vs lO;fs 6;" 
1034 PRINT#1."sr 0.5.1;" 
1040 FOR LOOP=0 TO L3+.1 STEP L3/10 
1050 XP=LOOP*SFACTOR+XSTART 
1060 YP=YSTART 
1070 PRINT#1,"pu"XP,YP";pd"XP.YP-80";" 
1080 PRINT#1,"pu"XP-50,Y~-lS0";lb"LOOP CHR$(3) 
1090 NEXT 
1100 FOR LOOP=0 TO L3/2 STEP L3/10 
1110 XP=XSTART 
1120 YP~LOOP*SFACTOR+YSTART 
1130 PRINT#I,"pu"XP,YP";pd"XP-80.YP";" 
1140 PRINT#1,"pu"XP-350,YP+40";Ib"LOOP CHR$(3) 
1150 NEXT 
1160 PRINT#I,"pu 1100,4000;sr;ID"TITLEl$ CHR$(3) 
1170 PRINT#I,"pu 1100,3800;Ib"TITLE25 CHR$(3) 
1174 PRINT#1,"sm.;" 
1180 RETURN 
2000 REMplot points 
2010 XP-XSTART+LP*SFACTOR 
2020 YP-YSTART+GP*SFACTOR 
2030 PRINT#1,"pa"XP,YP";" 
2040 RETURN 
3000 REM plot arcs 
3010 XCEN-(A+B)/2 
3020 RAD~(A,B)~2 
3030 XARCSTART XSTART+(XCEN-RAD)*SFACTOR 
3035 XCENuXCEN* S FACTOR+XSTART 
3040 PRXNT#1, "pa"XARCSTART, YSTART" ; - 
3050 PRINT#1, "pd; aa"XCEN,YSTART, "-180 ;" 
3060 RETURN 
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Fig, AI. Computer-plotted examples of type-3 Mohr loci. The method and all definitions are given in the Appendix. 


